
The Security of ARM TrustZone
in a FPGA-Based SoC

E. M. Benhani, L. Bossuet , Senior Member, IEEE, and A. Aubert

Abstract—Cybersecurity of embedded systems has become a major challenge for the development of the Internet of Things, of Cloud

computing and other trendy applications without devoting a significant part of the design budget to industrial players. Technologies like

TrustZone, provided by ARM, support a Trusted Execution Environment (TEE) software architecture and are inexpensive integrated

solutions. While this technology allows isolation and secure execution of critical software applications (e.g., banking), recent

preliminary works highlighted some security breaches or limitations when the ARM processors are embedded in a FPGA-based

heterogeneous SoCs such as the Xilinx Zynq or Intel SoC FPGA devices. This paper highlights the security issue of such complex

SoCs and details six efficient attacks on the ARM TrustZone extension in the SoC. A prototype system design on a Xilinx Zynq SoC is

the target of the attacks presented in this paper but they could be adapted to other SoCs. This paper also includes recommendations

and security solutions to design a trustworthy embedded system with a FPGA-based heterogeneous SoC.

Index Terms—FPGA Security, embedded system design, ARM TrustZone

Ç

1 INTRODUCTION

THE design of embedded systems requires the implemen-
tation of software and hardware components in the

same integrated devices because of the many constraints. At
the beginning of 2000s, some FPGA companies anticipated
these advances in design by integrating microprocessor
cores in FPGA fabrics. One and a half decades later, most
FPGA companies offer FPGA-based SoCs, which are stron-
ger than ARM processors and FPGA fabric combined. The
association allows designers of embedded systems to
develop powerful and efficient software-hardware systems
that benefit from software flexibility and hardware perfor-
mance. Moreover, ARM processors with embedded security
features are capable of reliably executing sensitive software
applications. This ARM security system is known as Trust-
Zone technology [1].

TrustZone is a hardware security extension of ARM pro-
cessors that helps divide both hardware and software
resources into two worlds, one secure and one non-secure.
Each world has its own private resources and shares others
with the second world. The TrustZone-enabled processor
has a monitor mode that controls the interaction between the
two worlds. With such an embedded security system, the
FPGA-based SoCs can be used to design a trusted embedded
system that provides a trusted execution environment (TEE)
[2]. This is a major advantage because FPGA-based SoCs are
used in increasing number of sensitive applications with

security requirements [3]. For example, FPGA-based SoCs
are used to secure data processing on the cloud [4], [5], to
implement internet protocol security (IPSec) [6], [7], to secure
communication in software radio systems [8], to secure cyber
physical infrastructure [9], industrial control systems and
safety-critical systems [10], [11].

However, the security of TrustZone technology in the
entire SoC, including the FPGA fabric, requires careful anal-
ysis. Indeed, the FPGA party embeds IP from third parties
that may be malicious and several internal side channels can
be exploited to access confidential data. So designers need to
understand possible attack scenarios and their benefits.

The contribution of this paper is to highlight the security
breaches of modern FPGA-based heterogeneous SoCs that
exploit ARM TrustZone technology. A first step in evaluat-
ing the TrustZone in modern FPGA-based heterogeneous
SoCs was discussed in [12]. The present paper describes six
efficient attacks on the ARM TrustZone extension in a
FPGA-based heterogeneous SoC. The paper also discusses
protection solutions in the literature, proposes new solu-
tions and makes design recommendations.

The paper is organized as follows. Section 2 reviews the
state of the art and highlights possible threats to ARM
TrustZone technology and FPGA-based heterogeneous SoCs.
Sections 3 and 4 provide background onARMTrustZone tech-
nology and on the AMBA AXI bus required to fully under-
stand the attacks described in the paper. Section 5 presents the
system prototype, based on a Xilinx Zynq-7010 device that
was used for the experiments presented in Section 6. Section 7
describes and recommends new design methodology and
security protection and design. Section 8 concludes the paper.

2 STATE OF THE ART

Studying the security of TrustZone technology in a FPGA-
base SoC requires exploring works that address TrustZone

� E. M. Benhani, L. Bossuet and A. Aubert are with the Hubert Curien Labo-
ratory, University of Lyon, Saint-Etienne 42000, France.
E-mail: {elmehdi.benhani, lilian.bossuet, alain.aubert}@univ-st-etienne.fr.

Manuscript received 25 June 2018; revised 18 Jan. 2019; accepted 13 Feb.
2019. Date of publication 17 Feb. 2019; date of current version 17 July 2019.
(Corresponding author: L. Bossuet.)
Recommended for acceptance by P. R. Schaumont.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2019.2900235

1238 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 8, AUGUST 2019

0018-9340� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on February 24,2022 at 03:34:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7964-3137
https://orcid.org/0000-0001-7964-3137
https://orcid.org/0000-0001-7964-3137
https://orcid.org/0000-0001-7964-3137
https://orcid.org/0000-0001-7964-3137
mailto:

security, FPGA security and FPGA-based SoC security. We
review the state of the art in these different fields.

2.1 TrustZone Security

As a processing system executing sensitive applications,
TrustZone is threatened by many attacks from the system to
the hardware level.

At the system level, Roseberg [13] studied a vulnerability
affecting Qualcomm implementation of the TEE (QSEE).
The vulnerability was present in a wide range of android
mobile devices supporting TrustZone and using a Qual-
comm Snapdragon SoC. Roseberg succeeded in executing a
non-secure code in a secure world by using a failure of han-
dling integer overflows in Security Monitor Call (SMC)
request function. This exploit is possible even in the pres-
ence of a security patch by software downgrading [14] or
privilege escalation using a test feature like JTAG [15].

At the system level, it is possible to cause a fault during
execution to bypass protection or to perform a cryptanaly-
sis. Lipp [16] showed that the rowhammer effect from a
non-secure world can be used to attack a TrustZone secure
world. This was confirmed by Carru [17], who described a
successful attack to recover a private key stored in the
secure memory of an RSA signature implementation, by
making a specific read of a row in the dynamic random-
access memory (DRAM) accessible. With the bit flip caused
by the rowhammer effect, the attack bypassed the Trust-
Zone system that normally prevents software executed in a
non-secure world from writing to secure memory (only
accessible from the secure world). Tang et al. [18] used
Dynamic Voltage and Frequency Scaling (DVFS) to induce a
fault in the seventh round of an AES encryption executed in
the secure world. They used a malicious kernel driver
installed in the non-secure world to attack the AES executed
in the secure world. The malicious kernel driver pushed the
operating frequency of the device beyond the allowed mar-
gins, while the AES was implementing loop encryption. The
device used in their attacks was a mobile device with a
TrustZone-enabled SoC. DVFS can also be used as a covert
channel to secretly send information from one thread to
another, as shown in [19]. In the same way, a thermal chan-
nel can be used as a covert channel [20].

At the system level, side channels such as cache-based
attacks are also efficient against the TrustZone. To perform
a cache-based attack, the cache memory has to be shared
between several processors or applications. Zhang et al. [21]
presented a study on cache timing-based information leak-
age from the ARM TrustZone. Using the Prime and Probe
cache attack, they succeeded in recovering the full key of an
AES software implementation based on t-table. In this
attack, the attacker fills the cache with known states in the
non-secure world before executing the cryptographic opera-
tion in the secure world and observes the changes in the
state of the caches. These authors explained that the leakage
was due to a fundamental design choice of the TrustZone-
enabled cache architecture, which aims to improve system
performance by allowing the two worlds to share the same
cache hardware. Other examples of cache-based attacks on
ARM are provided in [22], [23], [24].

At the hardware level, physical side channel analysis is
also possible. Bukasa et al. [25] proved that the TrustZone

does not affect the efficiency of the electromagnetic analysis.
They succeeded in attacking an AES encryption using Corre-
lation Power Analysis (CPA) on a TrustZone-enabled device.
They also succeeded in attacking a verified PIN algorithm
using template attacks. Their two attacks underlined the risks
faced by users who use a SoC for critical operations with no
protection against physical attacks. The efficiency of electro-
magnetic analysis was also demonstrated in [26] and [27].

Another hardware level threat is the fault injection
attack. Majeric et al. performed an electromagnetic injection
locally on the ARM cryptographic accelerator and assura-
nce module (CAAM) during AES computations [27]. The
CAAM was physically located by electromagnetic analysis
before the fault injection attack. This is a typical scenario of
physical cryptanalysis of an embedded cipher, but fault
injection can also be used to target other sensitive parts of
the device such as secure storage. Rivi�ere et al. suggest
using electromagnetic injection to target the control flow,
especially the instruction cache, of an ARMv7-M architec-
ture [28]. Their study proves that such an attack can replace
and/or skip instructions and can break countermeasures or
bypass the security process. In the same way, [29] and [30]
suggest using power supply glitch and laser beam injection
to attack the secure boot by avoiding the security process
(loaded code authentication).

2.2 FPGA Intrinsic Security

As hardware systems, FPGAs are sensitive to all physical
attacks (side channel analysis, fault attacks) [31], [32]. Addi-
tionally, FPGAs are concerned by specific threats to their
configuration [31], [32], [33]. New kinds of threats recently
appeared concerning the transfer of sensitive data from one
part of the FPGA fabric (one IP) to another, or outside the
device.

Schellenberg et al. showed how to use the power distri-
bution network of a FPGA to perform a side channel analy-
sis of an AES cipher internally [34]. To this end, they used a
delay sensor based on a buffer chain with a stable clock as
input. Indeed, the path delay of the buffer chain depends on
the supply voltage and can be measured internally. Ring
oscillators can also be used thanks to their sensitivity to var-
iations in the supply voltage. In [35], the authors studied
this solution to prove that information leaks along the long
wire of the FPGA fabric and can be intercepted internally
by a malicious IP. To send the sensitive information dis-
creetly from the FPGA to outside the device, it is possible to
use a ring oscillator as a very low cost transmitter when
electromagnetic emission is being considered for the com-
munication channel, as proposed in [36].

2.3 FPGA-Based SoC Security

To the best of our knowledge, only two works have specifi-
cally addressed the security of FPGA-based heterogeneous
SoC embedded ARM TrustZone technology. First, Jacob
et al. showed how a malicious IP can access processor core
features and memory to bypass software or system security
such as the secure boot [37]. This paper demonstrates how a
secure boot is compromised by using a malicious IP despite
the use of cryptographic functions for boot code and
bitstream verification. Nevertheless, the ARM TrustZone

BENHANI ET AL.: THE SECURITY OF ARM TRUSTZONE IN A FPGA-BASED SOC 1239

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on February 24,2022 at 03:34:49 UTC from IEEE Xplore. Restrictions apply.

feature can counter the attack on the secure boot coming
from the FPGA. Indeed, if the TrustZone is configured before
the FPGA is programmed, it is possible to declare all transac-
tions arriving via slave ports of the processing system (typi-
cally memory access) as non-secure. In this way, even if
the master IP (on the FPGA fabric) declares itself to be secure
using the AXI protocol, the transaction remains non-secure
and the master cannot access the secure memory. Second,
a first step in evaluating the security of the ARM TrustZone
technology in an FPGA-based SoC was discussed in [12].
That paperwas the first to presentmodifications inmalicious
hardware made to take advantage of security failures in the
FPGA fabric to bypass ARM core security. Here, we extend
that pioneerwork by providing details of the attack scenarios
and by showing how the FPGA-based SoC security should
be addressed by taking all the design aspects into account,
from the CAD tool to the insertion of third party IP.

This review of the state of the art clearly identified threats
related to FPGA based-SoC, but other threats are possible
because FPGAs design was never security centric. This
paper describes several security breaches of FPGA-based
SoCs that should encourage FPGA suppliers to propose a
secure-by-design FPGA-based SoC.

The rest of the paper highlights the security issues of the
propagation of the TrustZone outside the ARM processor in
a heterogeneous SoC. The two following sections present
some technical aspects of the ARM TrustZone technology
and AXI bus.

3 ELEMENTS OF ARM TRUSTZONE TECHNOLOGY

The TrustZone technology is an ARM hardware security
extension built in a microprocessor core. It partitions both
hardware and software resources into two worlds, one
secure and one non-secure. The secure world protects high-
value code and data while the non-secure world executes a
rich operating system environment. ARM TrustZone is easy
to use [38] to protect private data from any untrustworthy
operating system or malicious software and to develop a
trusted execution environment (TEE) [39].

From the point of view of hardware, the TrustZone is a
set of IP blocks that allows the application designer to parti-
tion the memory, the I/O peripherals, the interruptions,
and software execution into secure and non-secure worlds.
Two internal bits of the system architecture, the NS bits
(called AWPROT for write transactions and ARPROT for
read transactions), inform the full system that the executed
software is run in the secure world (the logic state of the NS
bits is low) or the non-secure world (the logic state of the
NS bits is high). The NS bits are two extra control bits on the
main system bus called AMBA3 AXI bus (see the following
section for more details).

The seven main hardware blocks of the TrustZone are:

1. The TrustZone protection controller (TZPC): controls
the partitioning of the peripherals into secure and
non-secure worlds.

2. The TrustZone address space controller (TZASC):
controls the partitioning of the dynamic random-
access memory (DRAM) into distinct memory
regions, and designates a memory region as secure
or non-secure.

3. The TrustZone memory adapter (TZMA): provides
similar functionalities to the TZASC for the on-chip
static memory.

4. The direct memory access controller (DMAC): con-
trols and prevents a peripheral assigned to the non-
secure world from performing a DMA transfer to or
from the secure world memory.

5. The generic interrupt controller (GIC): controls or
interrupts partitioning into secure and non-secure
worlds.

6. The L2 cache controller checks the NS bit corre-
sponding to the cache request. This bit is then taken
into account as the 33rd bit of the memory bus and
indicates which world refers to the cache memory
access.

7. AXI interconnect: if required, this block configures
the 3rd party IP added by the SoC designer as secure
or non-secure IP. A secure IP can be accessed by soft-
ware running only in the secure world, while a non-
secure IP can be accessed by software running in
both the non-secure world and the secure world.

The hardware blocks involved in the TrustZone technol-
ogy ensure that the configured security separation is not
violated during execution. Some of these hardware blocks
have the capability of dynamic configuration, which allows
the user to configure them in run time using memory regis-
ters. This last feature will be exploited in attack #6 presented
in Section 6 in this paper.

4 ELEMENTS OF AMBA3 AXI SYSTEM BUS

To fully understand the attack scenarios presented in this
paper, the reader needs details on the advanced extensible
interface (AXI) bus that is part of the ARM advanced micro-
controller bus architecture (AMBA) specifications.

Indeed, one of the most useful features of the ARM Trust-
Zone technology is the ability to secure the full system and
not only the processor core. This feature allows the system
user to extend the security from the processor core to the full
system including the processor memories and peripherals.
In an ARM-based TrustZone-enabled system, the security
extension is implemented using the AXI system bus.

4.1 The AXI Bus Communication Channels

The AXI system bus uses a handshake protocol between a
master and a slave. As illustrated in Fig. 1, its interface con-
sists of five channels.

Fig. 1. The communication channels of the AMBA3 AXI system bus
between a master interface and a slave interface.

1240 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 8, AUGUST 2019

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on February 24,2022 at 03:34:49 UTC from IEEE Xplore. Restrictions apply.

Each of the five communication channels uses a VALID
and READY handshake signal pair to indicate when the
transmitter is ready to send valid data and when the
receiver is ready to process bus data. For any transactions
(address/data/response), the transmitter VALID and the
receiver READY signals should be asserted (forced to a high
level logic status).

As mentioned above, the read and write channels of the
AXI system bus include both NS bits. The ARPROT bit is
included in one of the two read channels and the AWPROT
bit is included in one of the three write channels.

During a transaction (read or write), the communication
master assigns an appropriate value to the dedicated NS bit.
The slave checks the NS bit to be sure that no security viola-
tion has occurred during the transaction. For example, if a
non-secure master attempts to obtain write access (the NS
bit, AWPROT, the logic state is high) on a secure slave, the
slave sends an error on the AXI bus system write response
channel. To do so, it uses the two dedicated 2-bit signals
BRESP (on the response channel) and RRESP (on the read
data channel). This error could be a DECERR (decode error
with the binary value “11”) or a SLVERR (slave error with
the binary value “10”). If the transaction is correct, the slave
sends an OK on the AXI bus using the same 2-bit signals
(with the binary value “00”).

4.2 The AXI Interconnect

In a FPGA-based TrustZone-enabled heterogeneous SoC, an
AXI interconnect is used to statically connect the hardware
IPs configured in the FPGA fabric and the ARM-centric

processing system. As illustrated in Fig. 2, on the AXI inter-
connect, each IP connected by an interface (slave or master
interface as a function of the IP status) can be configured as
a master or as a slave, and also as a secure IP or a non-secure
IP. Inside the AXI interconnect, a crossbar routes the traffic
between the slave and master interfaces of the AXI intercon-
nect. Along each pathway connecting a slave interface or
master interface to the crossbar, an optional series of AXI
infrastructures (couplers) can perform various conversions
and buffering functions.

During design time, the security feature on the AXI inter-
connect can be statically enabled or disabled and the AXI
interconnect master interface slots can be assigned a static
secure or non-secure status. Each AXI interconnect master
interface slot is connected to a third-party hardware IP.

In the FPGA fabric of a TrustZone-enabled heteroge-
neous SoC, the crossbar of the AXI interconnect is usually
responsible for checking the security status of the transac-
tion by comparing the NS bits on the AXI system bus with
the security status of the IP involved. In the case of a secu-
rity violation, the crossbar sends back a DECERR error to
the appropriate couplers and these then stop the transaction
and transfer the error back to the master IP.

5 ATTACK SETUP

This section first presents the threat models and second, the
targeted SoC, a Xilinx Zynq-7010 device, and the targeted
system prototype.

5.1 Threats Model

Designing and testing a heterogeneous hardware-software
system on a complex SoC requires many engineers, and in
most cases relies on third party IP and tools to meet market
expectations. The more complex the system, the larger the
threat model. Indeed, a rogue design engineer, a malicious
third party IP or virus-infected computer aided design tools
have the potential ability to alter the system security even
when the TrustZone technology is used. There are many
potential attack paths. Each malicious/infected component
can maliciously change the system and affect its security.

The rest of this paper considers the threats that result
from a malicious modification of the system design. Attacks
exploiting such threats can lead to denial-of-service (DoS),
to privilege escalation, to leakage of secure information, and
to the installation of a malicious software.

5.2 Xilinx Zynq-7010 Programmable SoC Device

All the attack scenarios presented in this paper use the
Xilinx Zynq-7010 SoC as target. This device is an Trust-
Zone-enabled heterogeneous SoC widely used in most
industry and academic use cases. Nevertheless, the Xilinx
Zynq SoC closely resembles other heterogeneous SoCs,
such as Intel Cyclone V SoC or Intel Stratix 10 SoC. The
attack scenarios presented here are also conceivable with
other SoC targets.

The Xilinx Zynq-7010 SoC is partitioned into an ARM-
based processing system, and a FPGA fabric called programma-
ble logic. The Xilinx Zynq-7010 programmable logic includes a
hard-core cipher block used for authentication and decryp-
tion to ensure a secure configuration and a secure boot.

Fig. 2. Illustration of an AXI interconnect coupling one processing sys-
tem (master executing secure or non-secure application), one master-IP
(the non-secure IP#1) and two slave-IPs (the non-secure IP#2 and the
secure IP#3).

BENHANI ET AL.: THE SECURITY OF ARM TRUSTZONE IN A FPGA-BASED SOC 1241

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on February 24,2022 at 03:34:49 UTC from IEEE Xplore. Restrictions apply.

The Xilinx Zynq-7010 is compliant with TrustZone tech-
nology but the software and hardware implementation of
the TrustZone security services involves a complex process.
Interested readers can follow the cost free on-line tutorial
[40] on designing a TrustZone-enable system with the Xilinx
Vivado CAD tool.

5.3 System Prototype

This paper presents the proof of concept of several attack
scenarios. In order to perform the attacks, a prototype of
a simple system was developed with the bare necessities.
Fig. 3 presents the architecture of this simple system,
which contains an ARM-centric processing system (with
activation of the TrustZone features) and a programmable
logic. The programmable logic embeds one AXI interconnect
that links the processing system as a master (secure or not
depending on the security status of the software applica-
tion) with two hardware slave IPs. One IP is secure and
the other is non-secure. The two hardware IPs have a
dedicated memory region for configurations and data
storage.

In the case of Xilinx SoC, the security check is done at the
AXI interconnect level and is not transferred to the hard-
ware IPs. The master of the system is responsible for check-
ing the security of the transaction. The crossbar of the AXI
interconnect does the security check just after receiving the
address from the master, using a conditional test. The test
compares the static security status of the targeted IP and the
protection signal. The NS bits inform the security status of
the all system items involved in a transaction.

6 PRESENTATION OF THE ATTACKS

This section presents six attacks targeting the TrustZone
propagation into the heterogeneous SoC.

6.1 Attack#1: To Compromise AXI AWPROT/
ARPROT Communication Signals

The aim of this attack is to fix the logic state of the protection
signals AWPROT[1]/ARPROT[1]. When the logic status of

these signals is fixed at a low level, the connection between
the AXI Interconnect and the processing system is still consid-
ered to be secure even when a software executed in the non-
secure world wants to access a secure IP resulting in a privi-
lege escalation attack. Indeed, the non-secure software
accesses the secure IP as well as each memory region allo-
cated to the secure IP with read and write permission.

When the logic status of the AWPROT[1]/ARPROT[1] is
fixed at a high level, the connection between the AXI Inter-
connect and the processing system is always considered to be
non-secure even when a software executed in the secure
world wants to access a secure IP, which leads to a denial-
of-service.

One way to perform this attack is to use malicious modi-
fications of small hardware often presented as hardware
Trojans in the literature [41], [42]. This Trojan payload is the
AXI interconnect between one master interface and one
slave interface. Fig. 5 shows three examples of malicious
hardware modifications of the AXI interconnect that target
the AWPROT signal (the same modifications can be used to
compromise ARPROT signal). The hardware Trojans may
or may not include a trigger.

Another solution is to automatically perform an RTL
code modification after synthesis using a malicious TCL
script generated by a compromised CAD tool. In the case of
a CAD tool, the modification is compromised by using a
dedicated malicious software (malware) design to target the
CAD tool. However, only using a malicious software to
attack the CAD tool when the SoC design is targeted is an
efficient attack path. Moreover, the TCL script can also be
altered by a malicious designer. The design rule check tool
(DRC) and synthesis tools are both based on TCL script and
thus constitute a major threat if the source of the TCL script
is not trusted, as demonstrated in [43].

It is not difficult to change the TCL script. For example, to
automatically achieve the hardware modification presented
in Fig. 5a, the malicious entity (malicious software/rogue
designer) has to add the two malicious TCL commands pre-
sented in Fig. 4. The first command disconnects the net bit#1
of the AXI interconnect AWPROT signal connected to the pin
bit#1 of AWPROT of the AXI interconnect. The second com-
mand connects the disconnect pin to GND in order to fix it at
low logic level. To hide the malicious TCL from the designer
in the command log, the TCL script is executed using –notrace
and the commands use the -quiet option to ignore command
errors to avoid to leave traces (warning and errors in the case
of failure to execute the malicious commands).

The limitation of this method of modifying TCL is that
the system designer can change the name of the all nets
before RTL code is generated. Nevertheless, Xilinx offers
some commands that allow the CAD user (malicious or
not) to obtain information about the design such as the
net name that make it possible to get round this limitation
by automatically adapting the TCL modifications.

Fig. 3. Architecture of the simple system prototype used for the proof of
concept of the attack scenarios.

Fig. 4. Two TCL commands to add in the TCL script to automatically change the RTL code after synthesis and insert malicious hardware
modifications.

1242 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 8, AUGUST 2019

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on February 24,2022 at 03:34:49 UTC from IEEE Xplore. Restrictions apply.

6.2 Attack#2: To Compromise AXI BRESP/RRESP
Response Signals

As presented at the end of Section 4.1, the 2-bit transaction
response signals BRESP and RRESP are essential for the man-
agement of slave security. As a consequence, these signals are
appropriate targets for attack. To this end, a dedicated multi-
plexer can be added on the BRESP or RRESP signal as illus-
trated in Fig. 6 (in the case of BRESP signal). The techniques

of malicious hardware modification presented in the previous
subsection are also valid in this context.

Fig. 6 shows a malicious 4-to-1 multiplexer on the BRESP
signal used to force the slave response, but depending on
the attack scenario, this multiplexer could be smaller and
capable of forcing only one or two possible responses.

When the BRESP signal is forced to the binary value “00”
the slave response is forced to OK even in the case of secu-
rity status violation (software executed in the non-secure
world wants to access a secure IP), which leads to a privi-
lege escalation. Indeed, the non-secure software accesses
the secure IP and each memory region allocated to the
secure IP with read and write permission.

When the BRESP signal is forced to the binary value “10”
or “11”, the slave response is forced to SLVERR or DECERR,
respectively, even in the case of a correct transaction (when
a software executed in the secure world wants to access a
secure IP), which leads to a denial-of-service.

6.3 Attack#3: To Compromise the AXI Crossbar
Verilog Code or LUT Configuration

The AXI communication ‘signals are not the only sensitive
items. As described in Section 4.2, the crossbar of the AXI
interconnect plays an essential role in system security.
Indeed, the crossbar is responsible for checking the security
status of each transaction by comparing the NS bits on the
AXI system bus (security status of the software executed by
the processing system) with the security status of the targeted
hardware IP in the programmable logic.

As described in Section 6.1, if a CAD tool is compromised
(or in the case of a malicious designer), it is possible to attack
the crossbar by changing its Verilog hardware description.
Fig. 7 presents one possible malicious modification of this
Verilog code. Only one Verilog line is changed by adding
a conditional branch to obtain an escalade privilege when
the transaction concerns a specific secure IP. In Fig. 7, the
specific IP has the ID “01”, from now on referred to as IP#01.
The aim of the modification is to force the m_aerror_i[1] to
a low logical level, which indicates that the transaction is
correct (a high logical level of this bit leads to an exception
in the processing system).

In the modified Verilog code, the target_mi_hot signal is
used to indicate the ID of the targeted IP. It is a vector where
every bit is related to one of the master interfaces of the AXI
Interconnect. For example in the case of two IPs (two master
interface) connected to the AXI interconnect, the ID of the first
master interface “01”, the second is “10”. The P_M_SECURE_

Fig. 5. Three examples of modifications to the AXI interconnect targeting
the AWPROT signal by malicious hardware.

Fig. 6. An example modification of the BRESP signal by malicious hard-
ware to force the transaction response from a slave interface.

Fig. 7. Malicious modification of the Verilog code of the AXI interconnect
crossbar.

BENHANI ET AL.: THE SECURITY OF ARM TRUSTZONE IN A FPGA-BASED SOC 1243

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on February 24,2022 at 03:34:49 UTC from IEEE Xplore. Restrictions apply.

MASK signal is also a vector of bits that indicate the security
status of every master interface of the AXI Interconnect. If the
bit is a high logical level the interface is secure.

The target_secure signal in the Verilog code is the result of
the logical and bitwise between the P_M_SECURE_MASK
and target_mi_hot, if the master interface is secure the result
is equal to the interface ID, other the result is equal to “00”.

The transactions to other IPs than the IP#01 are the same
as with the original Verilog code. Indeed, the m_aerror_i[1]
bit depends on the result of the logical and between the NS
bit value (described by the S_APROT_NONSECURE_BIT
signal in the Verilog code) and the IP security status
(described by the value of the target_secure signal in the Ver-
ilog code). Unlike the NS bit, the S_APROT_NONSECURE_
BIT state is at a high logical level when the IP is secure and
at a low logical level when the IP is non-secure).

When the transaction targets the IP#01, the m_aerror_i[1]
bit is forced to a low logical level. The connection between
the AXI Interconnect and the processing system is still consid-
ered to be secure even when a software executed in the non-
secureworldwants to access the secure IP#01. Consequently,
this attack results in a privilege escalation. This kind of
modification could be used to create a denial-of-service if
them_aerror_i[1] is forced to high logical level.

Another possible form of attack is changing the FPGA con-
figuration at the LUT level. Indeed, the data stored in the
LUT are responsible for the configuration of the LUT and
hence for the logical function between the inputs and outputs
of the LUT. By observing the modifications in the configura-
tion between several instances of the AXI interconnect block,
the attacker can find information on the LUTs linked to the
crossbar. Despite the configuration of the AXI interconnect,
these LUTs conserve the same logical configuration, so the
attack can target them. Indeed, the configuration of the LUTs
can be forced to a null logical function which gives a low logic
level to its output despite the state of the input. To do so, the
attacker uses the malicious TCL command presented in
Fig. 8. With this configuration, the crossbar of the AXI inter-
connect block will respond OK despite the security status of
the hardware IP involved in the communication. As in the
previous example, this attack leads to a privilege escalation.

6.4 Attack#4: To Change the Static Security Status
of an IP from the AXI Interconnect Block

After the AXI communication signal and the crossbar, it is
possible to directly change the security status of an IP auto-
matically in the AXI interconnect by using a malicious TCL
command (in the case of a compromised CAD tool or of a
malicious designer). To do so, the attacker hides the malicious
TCL command presented in Fig. 9 in the synthesis TCL script.

This command changes the static security status of a master
interface slot of the AXI interconnect (linked to a slave inter-
face of a non-secure IP) to non-secure. The Xilinx AXI inter-
connect block offers 16 master interface slots to hardware IPs
connections. The attacker can target all 16 slots and change
their security status to non-secure. With such a change in the
security status, the IP is still considered by the AXI intercon-
nect block to be non-secure, thereby allowing all software to
access it even if the software is executed in the non-secure
world. This attack also leads to a privilege escalation.

Note that to perform this privilege escalation attack, the
attacker needs to know the exact names of the cells in the
design in order to target the correct AXI Interconnect. To do
so, Xilinx proposes many TCL commands to automatically
obtain this information. The attacker can then switch the
static security status of all the master AXI Interconnect inter-
face slots.

6.5 Attack#5: To Insert Malicious FIFO in the AXI
Interconnect Block

In 2016, Fern et al. first presented insertion of a malicious
FIFO in an AXI interconnection system [44]. Their paper
described the insertion of a hardware Trojan in an AXI4-Lite
in detail but assumed that the method was adaptable to any
bus. Based on this first study,we propose amaliciousmodifi-
cation of the RTL code of the AXI Interconnect Xilinx block in
order to add a FIFO inside the communication path. The
FIFO spy on the data sent from the software executed in the
secure world by the processing system to the secure IP and, if
requested, provides these data to the non-secure IP. How-
ever, it is also possible to use complementary spy circuitries
such as the lightweight electromagnetic transmitter pro-
posed by Bossuet et al. [36] to discretely send the data out-
side the SoC. The quantity of leaked data depends in
particular on the depth of the FIFO, but the FIFO needs to be
as small as possible to ensure the success of this attack.

The attacker makes the malicious modification to the AXI
Interconnect as illustrated in Fig. 10. Fern et al. [44] already
presented the details on how the FIFO is integrated in the
AXI Interconnect and explained how to choose read and
write conditions for the FIFO. In our case, we used the valid
signal of the write data channel connected to the secure IP
block as a FIFO write condition. We also used the valid signal
of the write data channel connected to the non-secure IP
block as a FIFO read condition.

Fig. 8. Malicious TCL command to force the configuration of a LUT used
for crossbar logical configuration.

Fig. 9. Malicious TCL command to hide in the synthesis TCL script by the
attacker in order to force the security-status of the AXI interface M00 to
non-secure even if the linked IP is secure.

Fig. 10. Malicious insertion of a FIFO in the AXI interconnect block to spy
on the data sent from the processing system (in the secure world) to the
secure IP.

1244 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 8, AUGUST 2019

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on February 24,2022 at 03:34:49 UTC from IEEE Xplore. Restrictions apply.

The attacker can add a condition to stop storing data in
the FIFO, for example, the WLAST signal that indicates the
end of a write transaction in the AXI protocol can be used.

6.6 Attack#6: To Directly Access the External
Memory

This efficient attack uses a malicious hardware IP with
direct access to the external memory using the ARM acceler-
ator coherency port (ACP) available on Xilinx Zynq [45] but
also in other SoC such as Intel SoC-FPGA [46]. The ACP
allows bus mapping between the malicious hardware IP
and the whole memory range including the ARM Trust-
Zone configuration registers such as the configuration regis-
ters of the TZPC and the TZASC (see Section 3). In this way,
the malicious IP bypasses almost all the security measures.
It can read secure data, steal a cipher key, or install a
malware.

Fig. 11 illustrates the uses of system architecture for this
attack. In the figure, the processing system runs a software in
the non-secure world, consequently, the processing system,
the secure and non-secure IPs do not have access to the
external memory. Only the malicious IP has full direct
access to the external memory including the configuration
register space. The malicious IP is an AXI master; it controls
the communication channel linking them to the processing
system. As an AXI master, the malicious IP also controls the
security status of the AXI bus; the processing system secu-
rity status (secure or non-secure world) does not affect it.

The success of this attack depends on two elements. The
first is how the malicious IP is mapped in the memory? It
needs to have access to the targeted region of the external
memory (storage of secure data, storage of instructions to
store the malware, storage of configuration registers). The
second element depends on the attacker’s knowledge of
software mapping and of the memory mapping of the tar-
geted platform.

For example, to target the ARM TZPC and TZASC in the
Zynq-7010 SoC, the attacker must know that the address of
the TZPC configuration register is 0xE0200018, and that the
address of the TZASC configuration register is 0x F8000430.
Each bit of the TZPC configuration register controls the
security status of one peripheral in the Zynq-7010 SoC. Sim-
ilarly, each bit of the TZASC configuration register controls
the security status of a 64 MB region of the memory. For
both TrustZone controllers, the bit is set to a high logical
level when the peripheral or the memory region is non-

secure, other ways are secure. In normal circumstances, the
TrustZone controllers are configured during the boot pro-
cess and at run time only for specific application requests
from the secure world. But the malicious IP is able to change
the TrustZone controllers at run time at any time.

7 AVOIDING ATTACKS

In the previous section, we described efficient attack paths
that exploit a hardware Trojan, a malicious third party IP, a
corrupted CAD or a malicious designer. In this section, we
first present and discuss a design methodology to increase
the security of FPGA-based heterogeneous SoC. The meth-
odology has never been previously presented. The four
steps of the method should be followed exactly to perfectly
isolate a secure zone and a non-secure zone in the program-
mable logic. Next, we propose to add two new controllers to
the processing system of the SoC and to use a design rule
checker. The methodology, the proposed new controllers
and the design rule checker provide high-level and holistic
protection against the attacks described above. Fig. 12 pro-
vides an overview of the architectural results of the pro-
posed methodology and the two new controllers described
in the following sections.

7.1 A Design Method to Isolate the programmable
logic

To avoid the attacks described in this paper, the designer
needs to isolate the secure and non-secure IPs in the pro-
grammable logic. The security isolation requires distinct proc-
essing system AXI ports, as shown in Fig. 12. The design can
be used for both Intel Cyclone V and Xilinx Zynq, but a spe-
cific methodology must be respected.

First, in the specific case of Xilinx Zynq SoC, to isolate the
secure and non-secure IPs in the programmable logic, the
designer should use Xilinx’s isolation design flow (IDF)
methodology, which allows independent IPs to operate on a
single FPGA with logical and physical separation. The IDF
methodology places and routes IPs in an isolated zone of
the FPGA surrounded by a fence (a set of unused FPGA ele-
ments in which no routing or logic is present). The IDF also

Fig. 11. System architecture embedding a malicious IP (in yellow) with
direct access to the external memory exploiting the ACP.

Fig. 12. Architectural results of the proposed methodology and the two
new controllers. Two isolated IP blocks (secure and non-secure) in the
programmable logic are connected to the memory through distinct AXI
ports and the two new controllers: TZSC and TZMC.

BENHANI ET AL.: THE SECURITY OF ARM TRUSTZONE IN A FPGA-BASED SOC 1245

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on February 24,2022 at 03:34:49 UTC from IEEE Xplore. Restrictions apply.

uses an independent design rule check tool to check the
fence and the connection to or from the isolated zone.

With the IDF methodology, the designer creates two sep-
arate IP blocks, a secure one (called the secure IP block) and a
non-secure one (called the non-secure IP block). The two IP
blocks have separate resources (output/input pins, clocks,
etc.) and the secure IP block is placed in an isolated zone, as
close as possible to the processing system AXI ports to avoid
any tampering with the bus security status (thereby avoid-
ing hardware Trojan and malicious IPs).

Second, the two separate IP blocks have to be connected
to the memory using the processing system AXI slave and
master ports. The memory stores the configuration of each
IP interface (secure / non-secure). The Xilinx Zynq-7010 SoC
has two general-purpose AXI master ports (labelled GP0
AXI port and GP1 AXI port in Fig. 12). Each has a dedicated
memory space (labelled GP0 Memory space and GP1 memory
space in Fig. 12). If the AXI port configuration is secure, the
memory space related to the port is not accessible by a soft-
ware application executed in the non-secure world.

Third, the processing system of the Xilinx Zynq-7010 SoC
also has two GP AXI slave ports (labelled GP0 slave AXI port
and GP1 slave AXI port in Fig. 12), four high performance
(HP) ports, and one ACP (previously used in attack#6). All
these ports allow direct access to the entire memory or,
alternatively, only to specific regions. The processing system
does not directly control access to the memory ports. Conse-
quently, the designer has to configure the GP slave ports
and the HP ports to only access the non-secure memory
or to access all the memories, from the programmable logic.
The configuration registers related to the slave interfaces
of the secure IPs are mapped in the GP1 memory space
(with the addresses from 0x80000000 to 0xC0000000). The
designer has to configure the GP1 AXI master port as secure
to stop the propagation of non-secure requests. This pre-
vents all access from software executed in the non-secure
world to the GP1 memory space. The design has to config-
ure the GP0 AXI master port as non-secure to allow access
to GP0 memory space from software executed in the non-
secure world or executed in the secure world.

Fourth, the designer has to configure the slave AXI ports
(the HP ports and the GP slave ports) connecting the non-
secure IPs to the memory as non-secure to restrict access to
only the non-secure memory.

These four-step methodologies allow designers to rein-
force their design against the attacks presented above. How-
ever, this is still not sufficient, and additional protections
should be used to protect the system against malicious
hardware. In the following, two new processing system con-
trollers and a design rule checker are presented as addi-
tional protection.

7.2 Two New TrustZone Controllers

In this section, we introduce two new TrustZone controllers
of the processing system: the TrustZone slave controller
(TZSC) and the TrustZone master controller (TZMC). The
software configuration of the TZSC and the TZMC can only
be done in the secure world.

The TZSC functions as a gatekeeper for thememory space
allocated to the slave interfaces of the programmable logic. The
TZSC checks the security status of each memory access from

a slave interface and generates exceptions when security
rules are violated. The TZSC is a mitigation of all the previ-
ously presented attacks except attack#6. The TZSC is placed
between the memory spaces and the AXI ports, as shown in
Fig. 12. The TZSC addresses two memory zones; a static
memory zone that is configured only once during secure
boot, and a dynamicmemory zonewith the capability of con-
figuring run-time software. This run-time software configu-
ration is executed only in the secure world. The dynamic
memory zone allows a software application executed in the
secure world to use a non-secure IP for a limited time and for
a specific function only.

The TZMC protects and partitions a new memory space
dedicated to direct memory access. In this way, direct mem-
ory access with no security checking is prohibited. Attack#6
(Section 6.6) revealed the weakness of a TrustZone-enabled
system against direct malicious memory access from the
programmable logic. The TZMC is a mitigation of this
attack. The TZSC is placed between the memory space dedi-
cated to direct memory access and the AXI ports, as in
Fig. 12. In the specific case of Xilinx Zynq SoC, the design of
the TZMC block can be based on the Xilinx Memory Protec-
tion Unit [47].

TZSC and TZMC are embedded in the processing sys-
tem, so hardware costs for the SoC are not significant. More-
over, as the two controllers release the AXI interconnect
from security checking, the performance of the system is
not reduced.

7.3 Checking Post-Synthesis Security Design Rules

Most of the attacks presented in Section 6 of this paper
could be performed by exploiting a CAD tool corrupted by
a malicious software (using dedicated viruses) or directly
by a malicious designer. To protect the system against such
threats, the CAD tool requires dedicated software protec-
tion, and the design should be protected by checking post-
synthesis security design rules. For the last point, solutions
are available in the recent literature. However, most of the
proposed solutions are limited to hardware Trojan avoid-
ance, [3], [48], [49] and the security of third-party hardware
IPs [50], [51].

The CAD tool has to check the security design rules of
the connections between the AXI interfaces. It has to check
that not every signal in the AXI channels is corrupted. To
do so, in the case of the Xilinx Vivado CAD tool, we propose
a python-programmed design rule checker (the source code
is freely available online [52]). Despite the fact it is a dedi-
cated code for Xilinx Vivado CAD tool, this python code can
easily be adapted to other CAD tools. The security checker
takes the VHDL code source of the top level design with the
AXI interconnect component instantiation as an input. As
output, the security checker reports the corrupted connec-
tions (if necessary) together with the name of the affected
signal and interface. The security checker begins by parsing
the VHDL source code and sorting the instantiated compo-
nents and internal signals. For each component, the security
checker lists its interfaces with their connections from/to
signals. The security checker then takes the connected com-
ponents two-by-two and checks the signals between them.
This solution should be systematically added to the CAD

1246 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 8, AUGUST 2019

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on February 24,2022 at 03:34:49 UTC from IEEE Xplore. Restrictions apply.

tool to insure the integrity of the design RTL source code
and to avoid malicious modification of the IP HDL code
source code.

8 CONCLUSION

The security of FPGA-based heterogeneous SoC is manda-
tory to enable embedded system designers to develop
secure execution environments for sensitive applications.
The extension of the ARM TrustZone technology in the SoC
appears to be a good solution if security is guaranteed.
However, the extension of the ARM TrustZone is currently
not secure. The present work provides proof that many
threats exist and that it is possible to use them to attack sys-
tem security, possibly with dramatic consequences. This
paper describes six attacks that were successfully carried
out on a typical software-hardware system, but other attack
paths are possible. Consequently, the designer who wishes
to develop sensitive applications on such heterogeneous
SoC must take the security of the entire system into account
as early as possible in the design flow. This paper presents
some new security solutions and design recommendations
for designers. Unfortunately, most designers are not accus-
tomed to security problems, nevertheless, CAD tools should
offer integrated and automatic solutions such as those pre-
sented in this paper.

REFERENCES

[1] T. Alves and D. Felton, “TrustZone: Integrated Hardware and Soft-
ware Security,” ARMWhite Paper, Jul. 3, 2004.

[2] S. Zhao, Q. Zhang, G. Hu, Y. Qin, and D. Feng, “Providing root of
trust for arm trustzone using on-chip sram,” in Proc. 4th Int. Work-
shop Trustworthy Embedded Devices, 2014, pp. 25–36.

[3] V. Jyothi, M. Thoonoli, R. Stern, and R. Karri, “FPGA TrustZone:
Incorporating trust and reliability into FPGA designs,” in Proc.
IEEE 34th Int. Conf. Comput. Des., 2016, pp. 600–605.

[4] K. Eguro and R. Venkatesan, “FPGAs for trusted cloud computing,”
inProc. 22nd Int. Conf. Field Programmable Logic Appl., 2012, pp. 63–70.

[5] M. A. Will and R. K. L. Ko, “Secure FPGA as a service-towards
secure data processing by physicalizing the cloud,” in Proc. IEEE
Trustcom/BigDataSE/ICESS, 2017, pp. 449–455.

[6] A. Salman, M. Rogawski, and J. Kaps, “Efficient hardware acceler-
ator for IPSec based on partial reconfiguration on Xilinx FPGAs,”
in Proc. Int. Conf. Reconfigurable Comput. FPGAs, 2011, pp. 242–248.

[7] B. Driessen, T. G€uneysu, E. B. Kavun, O. Mischke, C. Paar, and
T. P€oppelmann, “IPSecco: A lightweight and reconfigurable IPSec
core,” in Proc. Int. Conf. Reconfigurable Comput. FPGAs, 2012, pp. 1–7.

[8] M. Grand, L. Bossuet, G. Gogniat, B. Le Gal, J. Delahaye, and
D. Dallet, “A reconfigurable multi-core cryptoprocessor for multi-
channel communication systems,” in Proc. IEEE Int. Symp. Parallel
Distrib. Process. Workshops PhD Forum, 2011, pp. 204–211.

[9] M. Barbareschi, E. Battista, V. Casola and A. M. E. N. Mazzocca,
“On the adoption of fpga for protecting cyber physical infra-
structures,” in Proc. 8th Int. Conf. P2P Parallel Grid Cloud Internet
Comput., 2013, pp. 430–435.

[10] V. Kharchenko, A. Kovalenko, O. Siora, and V. Sklyar, “Security
assessment of FPGA-based safety-critical systems: US NRC
requirements context,” in Proc. Int. Conf. Inf. Digital Technol., 2015,
pp. 132–138.

[11] A. Singh, A. Prasad, and Y. Talwar, “SCADA security issues and
FPGA implementation of AES - A review,” in Proc. 2nd Int. Conf.
Next Generation Comput. Technol., 2016, pp. 899–904.

[12] B. El Mehdi, C. Marchand, L. Bossuet, and A. Aubert, “On the
security evaluation of the ARM TrustZone extension in a hetero-
geneous SoC,” in Proc. 30th IEEE Int. Syst. Chip Conf., 2017,
pp. 108–113.

[13] D. Rosenberg, “Qsee trustzone kernel integer over flowvulnerability,”
inProc. BlackHat Conf., 2014, p. 26.

[14] Y. Chen, Y. Zhang, Z. Wang, and T. Wei, “Downgrade attack on
TrustZone,” arXiv:1707.05082, 2017.

[15] F. Maj�eric, B. Gonzalvo, and L. Bossuet, “JTAG fault injection
attack,” IEEE Embedded Syst. Lett., vol. 10, no. 3, pp. 65–68, Nov. 2017.

[16] M. Lipp, “Cache attacks and rowhammer on arm,” Master Thesis,
Graz University of Technology: Graz, Austria, Oct. 2016.

[17] P. Carru, Attack trustzone with rowhammer, GreHack,
2017, https://grehack.fr/data/2017/slides/GreHack17_Attack_
TrustZone_with_Rowhammer.pdf.

[18] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Expos-
ing the perils of security-oblivious energy management,” in Proc.
26th USENIX Security Symp., 2017, pp. 1057–1074.

[19] M.Alagappan, J. Rajendran,M.Doroslova�cki, andG. Venkataramani,
“DFS covert channels on multi-core platforms,” in Proc. IEEE Int.
Conf. Very Large Scale Integr., 2017, pp. 1–6.

[20] R. J. Masti, D. Rai, A. Ranganathan, C. M€uller, L. Thiele, and
S. Capkun, “Thermal covert channels on multi-core platforms,” in
Proc. 24th USENIX Security Symp., 2015, pp. 865–880.

[21] N. Zhang,K. Sun, D. Shands,W. Lou, andY. T.Hou, “TruSpy: Cache
side-channel information leakage from the secure world on ARM
devices,” IACRCryptology ePrint Archive, vol. 2016, 2016,Art. no. 980.

[22] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“ARMageddon: Cache attacks on mobile devices,” in Proc. 25th
USENIX Security Symp., 2016, pp. 549–564.

[23] X. Zhang, Y. Xiao, and Y. Zhang, “Return-oriented flush-reload
side channels on arm and their implications for android devices,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Security, 2016,
pp. 858–870.

[24] M. Green, L. Rodrigues-Lima, A. Zankl, G. Irazoqui, J. Heyszl, and
T. Eisenbarth, “AutoLock: Why cache attacks on ARM are harder
than you think,” in Proc. 26th USENIX Security Symp., 2017,
pp. 1075–1091.

[25] S. K. Bukasa, R. Lashermes, H. Le Bouder, J.-L. Lanet, and
A. Legay, “How TrustZone could be bypassed: Side-channel
attacks on a modern system-on-chip,” in Proc. IFIP Int. Conf. Inf.
Security Theory Practice, 2017, pp. 93–109.

[26] J. Longo, E. De Mulder, D. Page and M. Tunstall, “SoC it to EM:
Electromagnetic side-channel attacks on a complex system-on-
chip,” in Proc. Int. Workshop Cryptographic Hardware Embedded
Syst., 2015, pp. 620–640.

[27] F. Maj�eric, E. Bourbao, and L. Bossuet, “Electromagnetic security
tests for SoC,” in Proc. IEEE Int. Conf. Electron. Circuits Syst., 2016,
pp. 265–268.

[28] L. Riviere, Z.Najm, P.Rauzy, J.-L. Danger, J. Bringer, andL. Sauvage,
“High precision fault injections on the instruction cache of ARMv7-
M architectures,” in IEEE Int. Symp. Hardware Oriented Secur. and
Trust (HOST), May 2015, pp. 62–67.

[29] N. Timmers, A. Spruyt and M. Witteman, “Controlling PC on
ARM using fault injection,” in Proc. Workshop Fault Diagnosis Toler-
ance Cryptography, 2016, pp. 25–35.

[30] A. Vasselle, H. Thiebeauld, Q. Maouhoub, A. Morisset, and
S. Ermeneux, “Laser-induced fault injection on smartphone
bypassing the secure boot,” in Proc. Workshop Fault Diagnosis Toler-
ance Cryptography, 2017, pp. 41–48.

[31] B. Badrignans, J. L. Danger, V. Fischer, G. Gogniat and L. Torres,
Security Trends for FPGAS: From Secured to Secure Reconfigurable
Systems, Berlin, Germany: Springer, 2011.

[32] M. Tehranipoor and C. Wang, Introduction to Hardware Security and
Trust, Berlin, Germany: Springer, 2011.

[33] L. Bossuet, V. Fischer, L. Gaspar, L. Torres, and G. Gogniat,
“Disposable configuration of remotely reconfigurable systems,”
Microprocessors Microsyst., vol. 39, pp. 382–392, 2015.

[34] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori, “An
inside job: Remote power analysis attacks on FPGAs,” in Proc.
Des. Autom. Test Europe Conf. Exhib., 2018, pp. 1111–1116.

[35] I. Giechaskiel, K. B. Rasmussen, and K. Eguro, “Leaky wires:
Information leakage and covert communication between FPGA
long wires,” in Proc. Asia Conf. Comput. Commun. Security, 2018,
pp. 15–27.

[36] L. Bossuet, V. Fischer, and P. Bayon, “Contactless transmission of
intellectual property data to protect FPGA designs,” in Proc. IFIP/
IEEE Int. Conf. Very Large Scale Integr., 2015, pp. 19–24.

[37] N. Jacob, J. Heyszl, A. Zankl, C. Rolfes, and G. Sigl, “How to break
secure boot on FPGA SoCs through malicious hardware,” in Cryp-
tographic Hardware and Embedded Systems. Berlin, Germany:
Springer 2017.

[38] J. Winter, “Experimenting with ARM TrustZone–Or: How i met
friendly piece of trusted hardware,” in Proc. IEEE 11th Int. Conf.
Trust Security Privacy Comput. Commun., 2012, pp. 1161–1166.

BENHANI ET AL.: THE SECURITY OF ARM TRUSTZONE IN A FPGA-BASED SOC 1247

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on February 24,2022 at 03:34:49 UTC from IEEE Xplore. Restrictions apply.

https://grehack.fr/data/2017/slides/GreHack17_Attack_TrustZone_with_Rowhammer.pdf.
https://grehack.fr/data/2017/slides/GreHack17_Attack_TrustZone_with_Rowhammer.pdf.

[39] R. Rijswijk-Deij and E. Poll, “Using trusted execution environ-
ments in two-factor authentication: Comparing approaches,”
Open Identity Summit, vol. 223, pp. 20–31, 2013.

[40] L. B. E. M. Benhani, “Design a TrustZone-enalble SoC usign Xilinx
VIVADO CAD tool,” Technical Report, University of Lyon, Lyon
France, 2017. [Online]. Available: http://labh-curien.univ-st-
etienne.fr/�bossuet/VIVADO_TrustZone_tutorial.pdf, 2017.

[41] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor,
“Trustworthy hardware: Identifying and classifying hardware
trojans,” Comput., vol. 43, pp. 39–46, 2010.

[42] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware
Trojan attacks: threat analysis and countermeasures,” Proc. IEEE,
vol. 102, no. 8, pp. 1229–1247, Aug. 2014.

[43] Z. Zhang, Q. Yu, L. Njilla, and C. Kamhoua, “FPGA-oriented
moving target defense against security threats from malicious
FPGA tools,” in Proc. IEEE Int. Symp. Hardware Oriented Security
Trust, 2018, pp. 163–166.

[44] N. Fern, I. San, C. K. Koc, and K.-T. Cheng, “Hardware trojans in
incompletely specified on-chip bus systems,” in Proc. Des. Autom.
Test Europe Conf. Exhib., 2016, pp. 527–530.

[45] M. Sadri, C. Weis, N. Wehn, and L. Benini, “Energy and perfor-
mance exploration of accelerator coherency port using Xilinx
ZYNQ,” in Proc. 10th FPGAworld Conf., 2013, Art. no. 5.

[46] Altera Corporation, “Hardware acceleration in SoC FPGAs,”
Architecture Brief, Altera Technical Report, pp. 1–3, 2014.

[47] Xilinx, “Zynq ultraScaleþ MPSoC Software devloper guide,” in
Xilinx Technical Report, UG1137, pp. 119–120, 2018.

[48] X. T. Ngo, J.-L. Danger, S. Guilley, Z. Najm, and O. Emery,
“Hardware property checker for run-time hardware trojan
detection,” in Proc. Eur. Conf. Circuit Theory Des., 2015, pp. 1–4.

[49] K. Xiao, A. Nahiyan, and M. Tehranipoor, “Security rule checking
in IC design,” Comput., vol. 49, pp. 54–61, 2016.

[50] E. Love, Y. Jin, and Y. Makris, “Enhancing security via provably
trustworthy hardware intellectual property,” in Proc. IEEE Int.
Symp. Hardware-Oriented Security Trust, 2011, pp. 12–17.

[51] B. Sherman, M. Borza, B. Rosenberg, and C. Qi, “Security assur-
ance guidance for Third-Party IP,” J. Hardware Syst. Security,
vol. 1, pp. 38–55, 2017.

[52] [Online]. Available: http://labh-curien.univ-st-etienne.fr/
�bossuet/Security_design-rules_checker.zip

M. Benhani received the MSc degree in electron-
ics and embedded systems from the Bordeaux
Institute of Technology, Bordeaux, France, in
2016. He is currently working toward the PhD
degree in Hubert Curien Laboratory, the Univer-
sity of Lyon. His research interests include hard-
ware and embedded system security.

L. Bossuet received the MSc degree in electrical
engineering from INSA, Rennes, France, in
2001, and the PhD degree in electrical engineer-
ing and computer sciences from the University of
South Britanny, Lorient, France, in 2004. From
2005 to 2010, he was associate professor, and
head of the Embedded System Department at
Bordeaux Institute of Technology. From 2010 to
2017, he was associate professor at the Univer-
sity of Lyon/Saint-Etienne and currently holds the
special CNRS (Centre National de la Recherche

Scientifique) chair of Applied Cryptography and Embedded System
Security. Since 2017, he has been professor at the University of Lyon/
Saint-Etienne, where he is head of the computer science department of
the Hubert Curien Laboratory. He is also head of the secured embedded
systems and hardware architecture group of this laboratory. In 2016, he
received the General Ferri�e Award in electronics from the French SEE
for his contribution to protection against IC counterfeiting and the IP pro-
tection. His main research focus is the security of embedded systems,
IP protection, PUF design and characterization, secure-by-design
crypto-processor, and reconfigurable architecture. He has published
more than 150 refereed publications in these areas and is a senior mem-
ber of the IEEE.

A. Aubert received the MSc degree in electrical
engineering from INSA, Lyon, France, in 1998,
and the PhD degree in electrical engineering
from the INSA, Lyon, France, in 2001. In 2004,
he became associate professor at the University
of Lyon/Saint-Etienne. His main research focus is
the security of embedded systems, in particular
in design and characterization of True Random
Numbers Generator (TRNG) implemented in
FPGA and ASIC.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1248 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 8, AUGUST 2019

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on February 24,2022 at 03:34:49 UTC from IEEE Xplore. Restrictions apply.

http://labh-curien.univ-st-etienne.fr/∼bossuet/VIVADO_TrustZone_tutorial.pdf
http://labh-curien.univ-st-etienne.fr/∼bossuet/VIVADO_TrustZone_tutorial.pdf
http://labh-curien.univ-st-etienne.fr/∼bossuet/VIVADO_TrustZone_tutorial.pdf
http://labh-curien.univ-st-etienne.fr/~bossuet/Security_design-rules_checker.zip
http://labh-curien.univ-st-etienne.fr/~bossuet/Security_design-rules_checker.zip

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

